Select K Elements Pattern
Instead of sorting an array, and selecting the elements ($O(nlogn)$),
we use a min or max heap to keep track of the k
elements.
Alternatively Quickselect could also be used for an average time-complexity of $O(n)$.
Methods
K-largest Elements in an Array
Problem: Given an array of n
integers, return the k
largest elements.
Solution: Use a min-heap of size k
to keep track of
the k
largest elements. As we iterate through the array, if an element is
larger than the root of the heap (the smallest of the k
largest elements),
we replace the root with the current element.
Why: The min-heap ensures that the smallest of the K largest elements is at the root. As we process each element, we only update the heap if the new element is larger than the current minimum. This approach runs in $O(n log k)$ time compared to the $O(nlogn)$ time required to sort the entire array.
#include <vector>
#include <algorithm>
#include <iostream>
[[nodiscard]] std::vector<int> kLargestElements(const std::vector<int>& nums,
std::size_t k) {
const auto size = nums.size();
// Initial heap of size K
std::vector<int> minHeap(nums.begin(), nums.begin() + k);
// Create a min-heap
std::make_heap(minHeap.begin(), minHeap.end(), std::greater<>{});
for (std::size_t i = k; i < size; ++i) {
if (nums[i] > minHeap.front()) {
// Remove the smallest element (actually just moves the largest to the end)
std::pop_heap(minHeap.begin(), minHeap.end(), std::greater<>{});
// Replace with the new larger element
minHeap.back() = nums[i];
// Restore heap property
std::push_heap(minHeap.begin(), minHeap.end(), std::greater<>{});
}
}
// The heap now contains the K largest elements
return minHeap;
}
int main() {
auto largest = kLargestElements({3, 2, 1, 5, 6, 4}, 2);
// Now the largest contains the K largest elements,
// but possibly not in sorted order, so we sort them for fun
std::sort(largest.begin(), largest.end(), std::greater<>{});
return largest[0] == 5 ? 1 : 0;
}
K-smallest Elements in an Array
Problem: Given an array of n
integers, return the k
smallest elements.
Solution: Use a max-heap of size k
to keep track of
the k
smallest elements. As we iterate through the array, if an element is
smaller than the root of the heap (the smallest of the k
smallest elements),
we replace the root with the current element.
Why: The max-heap
allows us to efficiently maintain the k
smallest
elements. Whenever we encounter a smaller element, we replace the largest
element in the heap, keeping the time complexity at $O(n log k)$.
#include <vector>
#include <algorithm>
#include <iostream>
[[nodiscard]] std::vector<int> kSmallestElements(const std::vector<int>& nums,
std::size_t k) {
const auto size = nums.size();
// Initial heap of size K
std::vector<int> maxHeap(nums.begin(), nums.begin() + k);
// Create a max-heap
std::make_heap(maxHeap.begin(), maxHeap.end());
for (std::size_t i = k; i < size; ++i) {
if (nums[i] < maxHeap.front()) {
// Remove the largest element (moves it to the end)
std::pop_heap(maxHeap.begin(), maxHeap.end());
// Replace with the new smaller element
maxHeap.back() = nums[i];
// Restore heap property
std::push_heap(maxHeap.begin(), maxHeap.end());
}
}
// The heap now contains the K smallest elements
return maxHeap;
}
int main() {
auto smallest = kSmallestElements({3, 2, 1, 5, 6, 4}, 2);
// Now the smallest contains the K smallest elements,
// but possibly not in sorted order, so we sort them for fun
std::sort(smallest.begin(), smallest.end(), std::less<>{});
return smallest[1] == 2 ? 1 : 0;
}
K Most Frequent Elements
Problem: Given a non-empty array of integers, return the k
most frequent
elements.
Solution: Use a min-heap
to store the k
most frequent elements.
First count the frequency of each element, then use the heap to keep
track of the k
elements with the highest frequency.
Why: The min-heap stores the elements with the highest frequencies while discarding elements with lower frequencies once the heap size exceeds K. The time complexity of this approach is $O(n log k)$.
#include <vector>
#include <unordered_map>
#include <algorithm>
[[nodiscard]] std::vector<int>
kMostFrequentELements(const std::vector<int>& nums, std::size_t k) {
std::unordered_map<int, int> frequencyMap;
for(auto num : nums) {
frequencyMap[num]++;
}
std::vector<std::pair<int, int>> minHeap;
minHeap.reserve(k+1);
for (const auto& [num, freq] : frequencyMap) {
minHeap.push_back({freq, num});
std::push_heap(minHeap.begin(), minHeap.end(), std::greater<>{});
if(minHeap.size() > k) {
// restore the Heap property
std::pop_heap(minHeap.begin(), minHeap.end(), std::greater<>{});
// remove the last element
minHeap.pop_back();
}
}
std::vector<int> result;
result.reserve(k);
for (const auto& [freq, num] : minHeap) {
result.push_back(num);
}
return result;
}
int main() {
auto freq = kMostFrequentELements({1, 1, 1, 2, 2, 3}, 2);
// Now the freq contains the K most frequent elements,
// but possibly not in sorted order, so we sort them for fun
// not on frequency but value btw
std::sort(freq.begin(), freq.end(), std::greater<>{});
return freq[0] == 2 ? 1 : 0;
}
K Closest Points to the Origin
Problem: Given a list of points on a 2D plane, find the k
closest points
to the origin (0,0)
.
Solution: Use a max-heap
to keep track of the k
closest points.
The can use the square-distance from a point $(x,y)$ to the origin.
By comparing the square-distances here we’re really just creating a max-heap.
#include <vector>
#include <algorithm>
#include <iostream>
struct Point {
int x = 0;
int y = 0;
[[nodiscard]] bool operator<(const Point& Other) const {
const auto distToOrigin = (x*x) + (y*y);
const auto otherDistToOrigin = (Other.x*Other.x) + (Other.y*Other.y);
return distToOrigin < otherDistToOrigin;
}
};
[[nodiscard]] std::vector<Point>
kClosestPointsToOrigin(const std::vector<Point>& points, std::size_t k) {
const auto size = points.size();
std::vector<Point> pointHeap(points.begin(), points.begin() + k);
std::make_heap(pointHeap.begin(), pointHeap.end());
for (std::size_t i = k; i < size; ++i) {
if (points[i] < pointHeap.front()) {
// Remove the largest element (moves it to the end)
std::pop_heap(pointHeap.begin(), pointHeap.end());
// Replace with the new smaller element
pointHeap.back() = points[i];
// Restore heap property
std::push_heap(pointHeap.begin(), pointHeap.end());
}
}
return pointHeap;
}
int main() {
auto points = kClosestPointsToOrigin({{-1,1}, {0, 1}, {3, 5}, {0, -1}}, 2);
return points[0].x == 0 ? 1 : 0;
}